from torch_snippets.torch_loader import Report
import numpy as np
import time
Report
= 3
n_epochs = Report(n_epochs)
report = 0
random_walker1 = 0
random_walker2
for epoch in range(n_epochs):
for ix in range(1000):
report.record(=epoch + (ix + 1) / 1000,
pos=random_walker1,
loss=random_walker2,
val_loss="\r",
end
)+= np.random.normal()
random_walker1 += np.random.normal()
random_walker2 0.001)
time.sleep(+ 1)
report.report_avgs(epoch
report.plot()
EPOCH: 1.000 loss: -6.503 val_loss: -3.093 (1.19s - 2.38s remaining)))
EPOCH: 2.000 loss: 48.754 val_loss: -6.265 (2.37s - 1.18s remaining))
EPOCH: 3.000 loss: 38.115 val_loss: -29.732 (3.54s - 0.00s remaining)
= 5
n_epochs = Report(n_epochs, old_report=report)
report
for epoch in range(n_epochs):
for ix in range(1000):
report.record(=epoch + (ix + 1) / 1000,
pos=random_walker1,
loss=random_walker2,
val_loss="\r",
end
)+= np.random.normal()
random_walker1 += np.random.normal()
random_walker2 0.001)
time.sleep(+ 1) report.report_avgs(epoch
EPOCH: 1.000 loss: 29.338 val_loss: -74.955 (1.17s - 4.70s remaining))
EPOCH: 2.000 loss: 0.340 val_loss: -110.763 (2.35s - 3.52s remaining)))
EPOCH: 3.000 loss: 30.617 val_loss: -84.599 (3.51s - 2.34s remaining))
EPOCH: 4.000 loss: 34.309 val_loss: -27.520 (4.68s - 1.17s remaining)
EPOCH: 5.000 loss: 15.252 val_loss: -46.033 (5.85s - 0.00s remaining)
import matplotlib.pyplot as plt
= plt.subplots()
fig, ax 0, -100, 100, colors=["red"])
ax.vlines(=ax) report.plot(ax